

Technical Brief

Floating-Point Specials
on the GPU

Table of Contents

Floating-Point Specials on the GPU ..1
Abstract ...1
What Are Floating-Point Specials?..1
Specials in the Rendering Pipeline ..2

Vertex and Fragment Shading...2
Texturing ..4
Framebuffer Operations ..4

Visualizing Specials ..5
Protecting Against Specials ..5

Arithmetic Specials..5
Overflow Specials..6

Conclusion ..6
References ...6

Floating-Point Specials on the GPU

Cem Cebenoyan

cem@nvidia.com

TB-01747-001_v01 i
02/17/05

mailto:cem@nvidia.com

Floating-Point Specials
on the GPU

Abstract
Floating-point math sometimes results in the generation of floating-point specials
(such as NaNs and Infs), on a CPU as well as on GPUs. These special numbers often
result in unintuitive rendering results that are hard to debug. This paper describes
when floating-point specials are generated in various stages of a modern GPU
pipeline, and discusses methods for handling and protecting against these situations.

What Are Floating-Point Specials?
Floating-point specials arise when the result of a floating-point math operation is
either undefined or out of the range of representable values for a given floating-point
format. For example, dividing a positive non-zero number by zero will result in a
special value of +Inf (positive infinity), and dividing a negative non-zero number by
zero will result in –Inf (negative infinity). Dividing zero by zero will result in NaN1
(not-a-number).

CPUs have been generating these special numbers for years (they are in the IEEE
754 floating-point spec, and more readably explained in [Goldberg 91]), and
programmers include code to handle these cases because they have come to expect
them for certain operations on the CPU (like divide-by-zero). The generation of
these values on the GPU, however, is often surprising, due to a few differences
between current GPU and CPU programming environments:

• Not all GPUs fully support floating-point specials. All NVIDIA GPUs that
support floating-point math do, but this does not generally apply to all IHVs.

• Due to support for half-precision (fp16) values in shaders, textures, and
render targets, overflow conditions are much easier to generate. While a
single precision (fp32) floating-point value will overflow (generating +Inf) at
around 3.4e38, fp16 values overflow at a more achievable 65504.

• Lack of full-featured GPU hardware debuggers can make these issues more
difficult to diagnose.

1 There is only one NaN format in the GeForce FX and GeForce 6 series. There is no SNaN
or QNaN distinction. All NaNs are, essentially, QNaNs.

TB-01747-001_v01 1
02/17/05

 Floating-Point Specials on the GPU

TB-01747-001_v01 2
02/17/05

• Until recently, GPU programming was restricted to using fixed-point
arithmetic, so most developers aren’t used to handling these cases.

For these reasons, the best way to prevent problems with floating-point specials in
your app is to write your GPU algorithms robustly, actively preventing their creation.

Specials in the Rendering Pipeline
Many stages of the GPU pipeline can generate (or at least propagate) specials; we
concentrate here on the shading stages (vertex and fragment), texturing operations,
and framebuffer access. Keep in mind that specials propagate from one stage to the
next, so outputting a special from the fragment shader is guaranteed to result in a
special reaching the framebuffer, if a pixel is written.

Vertex and Fragment Shading
Many basic shading operations generate special results depending on input. See tables
1, 2, and 3 for a few specific examples.

Table 1. Result of multiplication and addition of special numbers.
(X denotes a non-special number)

A B (A * B) (A + B)

0.0 +/- Inf NaN +/- Inf

+Inf -Inf -Inf NaN

+/- Inf non-zero X +/- Inf +/- Inf

NaN X NaN NaN

 Floating-Point Specials on the GPU

TB-01747-001_v01 3
02/17/05

Table 2. Result of unary operations.
(-X denotes a negative non-special number)

A rcp(A) rsq(A) log2(A) exp2(A)

0.0 +Inf +Inf -Inf 1.0

+Inf 0.0 0.0 +Inf +Inf

-Inf 0.02 NaN NaN 0.0

-X 1 / -X NaN NaN 2-X

NaN NaN NaN NaN NaN

Table 3. Result of comparisons of special numbers3

A B max(A, B) min(A, B) (A == B)

+Inf +Inf +Inf +Inf 1

+Inf -Inf +Inf -Inf 0

+/- Inf NaN NaN NaN 0

NaN NaN NaN NaN 0

We lump vertex and fragment shading together here because the handling of specials
for similar operations are identical, however, there are some important practical
differences:

• Fragment shaders can operate on fp16 values (in Direct3D, this is done using
the _pp instruction modifier for shader assembly, or the half data type in
HLSL), while vertex shaders do all operations on fp32 values. fp16 values
generally operate identically to fp32 values, but will overflow to +/- Inf much
more easily. The maximum representable fp16 value is 65504.

• Fragment shaders often output to a different precision floating-point format
in the framebuffer, resulting in a conversion that can cause finite values to
overflow. For example, when writing out to an fp16 render target, a finite but

2 Strictly speaking, this computation produces -0.0 (negative zero).
3 Note that these tables list the results of operations from the point-of view of the GPU
hardware. Practically, a compiler could, for example, optimize out or reorder an operation like
(A == B) depending on inputs, resulting in behavior that seems different from that listed in
the tables above.

 Floating-Point Specials on the GPU

TB-01747-001_v01 4
02/17/05

large fp32 value in the fragment shader will get converted to +Inf in fp16
format. This overflow generation of Inf does not happen with vertex shaders
because a large finite fp32 value in the shader either gets written to a high-
precision interpolator (like a texture coordinate) in which case it is preserved,
or is converted to a low-precision fixed-point format (like for the diffuse
interpolator or the fog distance) in which case it is simply clamped to [0..1].

Texturing
Surprisingly, simple texturing can also generate and propagate specials. Obviously, if
your floating-point textures contain special numbers, for textures fetched from the
vertex or fragment shader, these are passed through to the shader upon texture fetch.
More subtly, floating-point texture filtering (currently supported by GeForce 6800 and
6600 GPUs in the fragment shader for fp16 texture formats) can generate special
numbers, depending on input.4

It may seem strange for special values to exist inside a texture, but this actually occurs
frequently when doing framebuffer post-processing effects, such as blur, on a floating-
point buffer. In this case, if any specials exist in the framebuffer (such as an Inf due to
overflow in a previous rendering pass) these are fetched by texture in the blur pass
and, due to the nature of many blur algorithms, propagated over the (entire) screen.

Framebuffer Operations
Framebuffer operations can have especially subtle interactions with floating-point
specials. There are a couple of specific gotchas to look out for when dealing with the
framebuffer:

• As stated earlier, outputting a finite value from the shader can cause an
overflow if the render target format is of lower precision than the shader
output.

• Alpha blending operations are able to generate specials on hardware that
supports alpha blending with floating-point surfaces (the GeForce 6 series
supports fp16 per-component alpha blending). So the shader rules for
arithmetic apply here as well. For example, if you output an Inf in the RGB
channels, a zero in the alpha channel, and set SRCALPHA:INVSRCALPHA
blending, you will generate a NaN while blending which gets written to the
framebuffer. Another, more subtle example: if you are summing lights into a
floating-point buffer (ONE:ONE blending) and (SRCCOLOR +
DESTCOLOR) is greater than the maximum representable value of the
framebuffer format, you will get overflow, resulting in +Inf being output.
Note that this can happen even if all inputs (SRCCOLOR and
DESTCOLOR) are finite values.

4 Filtering (and texture fetch in general) will not, however, generate specials if specials do not
exist in the source texture. Finiteness is preserved by texture.

 Floating-Point Specials on the GPU

TB-01747-001_v01 5
02/17/05

Visualizing Specials
One of the tell-tale signs of a floating-point special problem is if your application
periodically has all or part of the screen turn black or white. Since you cannot directly
visualize a floating-point surface on a GeForce6 GPU, most algorithms dealing with
floating-point data convert them to fixed-point at some point. In this step, a +Inf
becomes white (1.0), and –Inf and NaN become black. Since most every value
involved in an arithmetic expression with a special becomes a special (see Table 1), a
single special value ends up propagating over a significant number of pixels in the
final frame buffer. This is especially true for algorithms where a single destination
pixel is influenced by many source pixels (for example, a blur).

Protecting Against Specials
There’s only one way to eradicate specials from your GPU algorithms: make sure
they do not get created in the first place. There are two basic ways to create a special
– with undefined arithmetic and due to overflow. We cover each in turn.

Arithmetic Specials
A special can be generated arithmetically with a simple bit of HLSL like this:

float3 vec = HalfAngleVec.xyz; //grab half angle vector

float vecLen = length(vec); //compute length

vec /= vecLen; //normalize (could divide by zero!)

If vec is of zero length, this snippet will cause vec to be the three vector (+Inf, +Inf,
+Inf) which will likely wreak havoc on the rest of the shader.

A simple solution to add robustness and avoid a special is to test for the zero-length
condition, just as you would in a CPU algorithm:

float3 vec = HalfAngleVec.xyz; //grab half angle vector

float vecLen = length(vec); //compute length

if (vecLen != 0)

vec /= vecLen; //normalize, more safely

Note that this additional test can increase the cost of your shader, so it should only
be done if the boundary condition is actually practically possible.

 Floating-Point Specials on the GPU

TB-01747-001_v01 6
02/17/05

Overflow Specials
Specials generated due to overflow conditions are trickier. As previously stated, these
can happen inside a shader, but are more likely to occur due to a range mismatch
between values inside a fragment shader and the output render target format. Testing
for this case is easy: simply add code to the end of your fragment shader to test for
exceeding the bounds of the render target format:

//compute world-space position

float3 worldSpacePos = mul(objPosition, WorldTransform);

//perform lighting <snipped>

//clamp z to fp16 range

worldSpacePos.z = min(worldSpacePos.z, 65504);

//store world space depth in alpha, output is 4xfp16 surface

return float4(color, worldSpacePos.z);

Note that this technique of clamping on output is very powerful– it not only solves
the case of overflow, but it also reduces the chance of a special getting generated by
framebuffer blending, and also localizes specials generated arithmetically (like the
divide by zero example in the previous section). After all, if what happens in the
shader stays in the shader – and it does if you keep from writing specials to the
output – you guarantee that specials do not propagate throughout your scene.

Conclusion
Floating-point specials are a relatively new concern in GPU programming -- before
modern programmable GPUs with full floating-point throughout the pipeline, they
just weren’t something programmers had to worry about. They are now a very real
issue, however, and creating robust rendering algorithms requires thinking about the
corner cases where specials can appear, understanding how the GPU handles them,
and adding code to check and handle these situations.

References
[Goldberg 91] D. Goldberg,What Every Computer Scientist Should Know About
Floating-Point Arithmetic, ACM Computing Surveys, Volume 23 Issue 1, p. 5-48,
1991

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS,
DIAGNOSTICS, LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”)
ARE BEING PROVIDED “AS IS." NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED,
STATUTORY, OR OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS
ALL IMPLIED WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A
PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation
assumes no responsibility for the consequences of use of such information or for any
infringement of patents or other rights of third parties that may result from its use. No license is
granted by implication or otherwise under any patent or patent rights of NVIDIA Corporation.
Specifications mentioned in this publication are subject to change without notice. This
publication supersedes and replaces all information previously supplied. NVIDIA Corporation
products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks

NVIDIA and the NVIDIA logo are trademarks or registered trademarks of NVIDIA Corporation in
the United States and other countries. Other company and product names may be trademarks of
the respective companies with which they are associated.

Copyright

© 2005 by NVIDIA Corporation. All rights reserved.

NVIDIA Corporation
2701 San Tomas Expressway

Santa Clara, CA 95050
www.nvidia.com

	Floating-Point Specials �on the GPU
	Abstract
	What Are Floating-Point Specials?
	Specials in the Rendering Pipeline
	Vertex and Fragment Shading
	Texturing
	Framebuffer Operations

	Visualizing Specials
	Protecting Against Specials
	Arithmetic Specials
	Overflow Specials

	Conclusion
	References

